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Abstract— The use of teams of Autonomous Underwater Vehicles for visual inspection tasks is a promising
robotic field. The images captured by different robots can also be used to aid in the localization/navigation of
the fleet. In previous works, we have proposed a distributed localization system based on the Augmented States
Kalman Filter through the visual maps obtained by the fleet. In this context, this paper details a system for
on-line construction of visual maps and its use to aid the localization and navigation of the robots. Different
aspects related to the capture, treatment and construction of mosaics by fleets of robots are presented. The
Scale Invariant Feature Transform (SIFT) algorithm is used as a method of extracting and describing keypoints
between consecutive images which are robustly invariant to common image transforms. The developed system
can be executed on-line on different robotic platforms. The paper is concluded with a series of tests and analysis,
in different underwater conditions, for system validation.
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1 Introduction

Autonomous Underwater Vehicles (AUVs) can be
applied to many tasks (Fleischer, 2000). In un-
derwater visual inspection, the vehicles can be
equipped with down-looking cameras, usually at-
tached to the robot structure (Garcia et al., 2005).
These cameras capture images from the deep of
the ocean, supplying visual maps as the vehi-
cle navigates. Each captured image is used to
compose such map. Consecutive images are then
aligned, generating a final map, also known as mo-
saic (Botelho et al., 2007). The generated mosaics
can also be used as reference maps for the vehicle
navigation system (Fleischer, 2000). This gives to
the robot the ability to navigate in an autonomous
way and in real-time. Given the robot altitude
relative to the deep of the ocean (i.e. from the
robot’s altimeter) and the camera field of view, the
covered area is known and real-time navigation is
possible, using the described on-line construction.

In this context, we argue that simple
robot fleets can be more efficient than a so-
phisticated AUV, in specific underwater explo-
ration/inspection tasks. These simple vehicles
could explore the same area in just a fraction of
the time demanded by a single sophisticated AUV.
More efficient mosaics can be generated and its
visual information can be used to help the local-
ization and navigation of the fleet.

In previous papers, an extension to the Aug-
mented State Kalman Filter (ASKF) was pre-
sented, aiming the states estimation for a fleet
of robots with down-looking cameras (Botelho
et al., 2007). Besides, we have implemented a vi-
sual system based on (Garcia et al., 2005). In

this approach, noises related to image acquisi-
tion were filtered out by using the Prewitt Filter
(low-pass). Points of interest were obtained by
a border detection algorithm (corners) (Shi and
Tomasi, 1994). However this visual-based local-
ization system needs that the z coordinate (deep)
holds constant. Moreover, its does not deal very
well with noises and undersea features.

Thus, in this paper we propose a new ap-
proach to extract and describe keypoints between
consecutive images which are robustly invariant
to common image transforms. This method is
called Scale Invariant Feature Transform (SIFT)
(Lowe, 2004). Our Distributed Visual System for
on-line mosaic construction is presented. The sys-
tem supply information for the ASKF estimator.
The images can be captured by simple low-cost
underwater robots, associated to a processing unit
connected to the surface, the mosaic can be com-
puted by the robot itself.

Initially the paper presents related works
on underwater mosaic construction. Section 3
presents a detailed view of our approach with
SIFT algorithm, followed by the implementation,
test analysis and results with different undersea
features. Finally, the conclusion of the study and
future perspective is presented.

2 Utilizing AUVs for Visual Mapping

Vision system for mapping the deep of the ocean
have been developed since the end of the 80’s. In
those systems the mosaic were used only as visual
information for the users in the surface.



The Construction of Visual Maps In order
to assemble the mosaic, the various captured im-
ages (also known as frames) must be successively
overlayed, resulting in a single visual map. Nor-
mally, the overlaying of those images takes a few
steps.

Initially, the images pass through a Pre-
processing stage, when geometric deformations are
corrected and inadequate information for process-
ing are removed. After that, the displacement be-
tween consecutive frames need to be measured.
In the literature we can find a set of works in the
frequency (Rzhanov et al., 2000) or in the spa-
cial domain (Olmos et al., 2000). The latter can
be feature-based (search by points of interest) or
featureless (no need for points of interest). The
relative movement between consecutive captured
images can be estimated by Homography (planar
matrix transformation) (Szeliski, 1994).

Having the displacement information, Mosaic
update takes place. In this stage the determina-
tion of when and how a new image must be incor-
porated to the mosaic (temporal/spacial interval)
occurs. Finally the Image overlaying and mosaic
construction phase is executed. The pixels are
combined so they overlay in the time-line (for ex-
ample, average in time, medium in time, most re-
cent pixel or least recent pixel).

Utilizing Mosaics for AUV localization
The use of visual maps to assist in the localization
of the vehicle introduces a new phase on the pro-
cess: path estimation from the captured images,
taking into account the need for on-line process-
ing.

The previous works concerning utilization of
mosaics for AUV localization consisted on de-
tecting and correlating points in successive im-
ages. The Kalman Filter was used to predict point
positions on the next image. The vehicle path
was estimated using Generalized Hough Trans-
form (GHT). Another approach created visual
maps in real-time by using special-purpose hard-
ware for image manipulation (Marks et al., 1995).

(Gracias et al., 2002) uses the Harris and
Stephes algorithm for the detection of border
points as the points of interest, using first or-
der derivatives of the images, estimating move-
ment parameters (planar matrix transformation)
for a sequence of images. A system for the gen-
eration of mosaics and real-time estimation of
3D displacement utilizing special-purpose hard-
ware was developed by (Negahdaripour et al.,
1998).(Garcia et al., 2005) applies texture oper-
ators and similarities measurement, as the En-
ergy Filter, Co-occurrence Matrix, and others,
making the correlation between consecutive im-
ages of the mosaic more precise. This approach
was implemented directly in special-purpose hard-
ware. The utilization of visual information to as-

sist the dynamic stabilization of vehicles presented
by (Perrier, 2005) should also be cited, as well as
works in which the visual information is used in
conjunction with informations acquired by other
sensors (Kalyan et al., 2005).

(Se et al., 2005) propose a system for vision-
based localization and mapping of mobile robots.
This system uses SIFT to detect and correlate key-
points. The method computes a descriptor for the
local image region that is invariant to image scale
and rotation and highly distinctive, besides it is
as invariant as possible to remaining variations,
such as change in illumination or 3D viewpoint
(Lowe, 2004).

In the multi-AUVs context, issues associated
with architecture and supervision (Spenneberg
et al., 2005), Mines Inspection using distributed
sonar, new kinds of sensors, as smart cables (Yu
and Ura, 2004) are presented in the literature.
(Madhavan et al., 2002) proposes the utiliza-
tion of Kalman Filters for state estimation of
wheeled mobile robots and known structured en-
vironments.

In this paper, originally propose a fleet of
AUVs, each one using visual information to im-
prove on the localization task of the robots. The
visual system is based on SIFT algorithm to treat
undersea images captured by each robot. The
system employs ASKF for fleet state estimation
(Botelho et al., 2007). Next section details a dis-
tributed visual system for the construction of vi-
sual maps by sets of AUVs.

3 A distributed visual system for the
construction of visual maps

This work starts with pre-processing and manip-
ulation of correspondence points, then using ho-
mographic techniques and finally the on-line as-
sembly of the distributed mosaic. The following
subsections presents details of each one of these
steps.

Pre-Processing The distortion caused by
the camera lenses can be represented by a ra-
dial and tangential approximation. As the radial
component causes a bigger distortion, most of the
works developed so far corrects only this compo-
nent (Gracias et al., 2002) . Thereby, the following
equations 1 are used to correct radial distortion.

Pd = P (1 + k1 ∗ r2 + k2 ∗ r4) (1)

where Pd = (xd, yd) are the corrected coordi-
nates of the distorted point measure P = (x, y) ,
r = (x2 +y2) and k1 e k2 are the coefficients of ra-
dial distortion, which are unique to the individual
camera.



3.1 Detection of Keypoints and Correlating

The Scale Invariant Feature Transform (SIFT) is a
robust filter to extract and describe interest points
of images (Lowe, 2004). The algorithm has 4 ma-
jor stages.

Scale-space extrema detection The first
stage searches over scale space using a Difference
of Gaussian function to identify potential interest
points.

Keypoint localization The localization and
scale of each candidate point is determined and
keypoints are selected based on measures of sta-
bility.

Orientation assignment One or more ori-
entations are assigned to each keypoint localiza-
tion based on local image gradient directions. All
future operations are performed on image data
that has been transformed relative to the assigned
orientation, scale, and location for each feature,
thereby providing invariance to these transforma-
tions.

Keypoint descriptor The local image gra-
dients are measured at the selected scale in the
neighborhood of each keypoint. These are trans-
formed into a representation that allows for sig-
nificant levels of local shape. The description vec-
tor is divided by the square root of the sum of
squared components to obtain partially illumina-
tion invariance.

The SIFT feature algorithm is based upon
finding localizations within the scale space of
an image which can be reliably extracted. The
first stage finds scale-space extrema located in
D(x, y, θ), the Difference of Gaussians (DOG)
function, which can be computed from the differ-
ence of two nearby scaled images separated by a
multiplicative factor k, as shown in equation 2.

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)
= L(x, y, kσ)− L(x, y, σ) (2)

where L(x, y, σ) is the scale space of an im-
age, built by convolving the image I(x, y) with
the Gaussian kernel G(x, y, σ). Points in the
DOG function which are local extrema in their
own scale and one scale above and below are ex-
tracted as keypoints. Generation of extrema in
this stage depends on the frequency of sampling
in the scale space k and the initial smoothing
σ0. The keypoints are then filtered in search for
more stable matches in more accurate scales and
with greater subpixel precision using methods de-
scribed in (Brown and Lowe, 2002).

Before a descriptor for the keypoint is con-
structed, the keypoint is assigned an orientation
to make the descriptor invariant to rotation. This
keypoint orientation is calculated from an orienta-
tion histogram of local gradients from the closest

smoothed image L(x, y, σ). For each image sam-
ple L(x, y) at this scale, the gradient magnitude
m(x, y) and orientation θ(x, y) is computed using
pixel differences, as shown in equation 3 and 4.

m(x, y) = (L(x + 1, y)− L(x− 1, y))2 +
(L(x, y + 1)− L(x, y − 1))2)1/2 (3)

θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))
/(L(x + 1, y)− L(x− 1, y))) (4)

The orientation histogram has 36 bins cover-
ing the 360 degree range of orientations. Each
sample added to the histogram is weighted by its
gradient magnitude and by a Gaussian-weighted
circular window with a σ that is 1.5 times that
of the scale of the keypoint. Additional keypoints
are generated for keypoint locations with multiple
dominant peaks whose magnitude is within 80% of
each other. The dominant peaks in the histogram
are interpolated with their neighbors for a more
accurate orientation assignment.

The local gradient data from the closest
smoothed image L(x, y, σ) is also used to create
the keypoint descriptor. This gradient informa-
tion is first rotated to align it with the assigned
orientation of the keypoint and then weighted by
a gaussian with σ variance. The weighted data is
used to create a nominated number of histograms
over a set window around the keypoint. Each his-
togram has 8 orientation bins each created over a
support window of 4x4 pixels. The resulting fea-
ture vectors are 128 elements with a total support
window of 16x16 scaled pixels.

The best candidate to correlate each keypoint
is found by identifying its nearest neighbor in the
database of keypoints from training images. The
nearest neighbor is defined as the keypoint with
minimum Euclidean distance for the invariant de-
scriptor vector.

However, many keypoints from one image will
have no good match to the second image. To
eliminate false matches, the most effective method
is to compare the smallest match distance to the
second-best distance. A match should be selected
only if this ratio is below a threshold.

3.2 Estimating the Homographic Matrix

The images correlation provide a set of relative
displacement vectors between the points associ-
ated to the found correspondence pairs. The n
pairs are used to determinate the homographic
matrix H. This homographic matrix will pro-
vide the estimated displacement between such im-
ages, transforming the homogeneous coordinates
into non-homogeneous. The terms are operated
in order to obtain a linear system, as the equation
5:






x1′ 0 · · · xn′ 0
y1′ 0 · · · yn′ 0
1 0 · · · 1 0
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(5)

3.3 Assembling the Mosaic

The mosaic construction concept of this paper al-
lows a single vehicle to generate its mosaic and
also multiple vehicles to construct it concurrently,
using the same programming structure. The vi-
sual construction stages of the mosaic are detailed
next.

Global Registry on the Mosaic Defined the
projective transformation matrix between the pre-
vious image I and the current image I′, knowing
the average value of the distances between inter-
est points m and m′ from the images is different
from zero, it is possible to register globally the
current image I′, adding it and the H matrix to
the mosaic structure, considering the H matrix is
now referenced by kHk+1, where k references I
and (k + 1) references I ′. The global projective
transformation 1 of the image I′ on the mosaic
can be defined by the equation 6.

1Hk+1 =
∏

i=1,...,k

iHi+1, (6)

The Distributed Construction Task To vi-
sually assemble the mosaic, the global projec-
tive transformation of each image belong to in
the map must be known. As described by 6,
1Hk+1 represents this information and is used in
m̃1 = 1Hk+1 · m̃(K+1), which provides where each
pixel ( m(K+1) position) from the mosaic’s im-
age (k + 1) must be written on the final mosaic
(m̃1 position). The points m̃(K+1) vary within
x ∈ [1 . . . l] and y ∈ [1 . . . c], assuming l and c the
captured image dimensions.

When multiple vehicles are executing explo-
ration jobs, the matrix 1H1 from the first image
of each vehicle is defined by the equation 7:

1H1 =




1 0 tx
0 1 ty
0 0 1


 (7)

1relative to the first reference image added

Notice that in this case each robot will be ini-
tially shifted by a position (tx, ty) from the iner-
tial reference, so this position must be informed
by the system operator on startup. Thus, consid-
ering that the matrix 1H1 of each vehicle will be
different, the homography 1Hk+1 of each one will
provide the position on the final mosaic, therefore
other transformations are not necessary.

Localizing the Fleet In (Botelho et al., 2007),
the Augmented State Kalman Filter was extended
to estimate the correct 3D position of the fleet
and mosaic. The ASKF is fed with displacement
informations obtained on the homography stage,
correcting errors acquired throughout the process.

Capital cost of the system is limited to that
of a camera, lighting, off-line storage and a capa-
ble processor (required for inspection tasks). No
infrastructure such landmarks, beacons is neces-
sary. However our system makes some assump-
tions: persistent appearance of the scene, majority
flat 2D scene, restricted robot motion and initial
position estimate of each robot.

The proposed Visual System was completely
implemented. A set of tests are done, validating
the proposal.

4 System Implementation, Tests and
Results

We have design an underwater vehicle. These
robots are equipped with a Tritech Typhoon -
Colour Underwater Video Camera with Zoom, a
Miniking sonar and a set of sensors (altimeters
and accelerometers).

The developed platform consists of a software
system for each vehicle and another for the central
station. The implementation is based on a client-
server architecture.The communication between
the client and the server uses sockets, which uti-
lizes TCP (Transmission Control Protocol). The
client software is responsible for capturing the im-
ages obtained by the camera. Besides it process
the SIFT correlation between those images. The
central station is responsible for gathering the in-
formation from all the vehicles, assembling the
distributed visual map. A set of tests and analy-
sis were executed verify and validate the usage of
the involved parameters and processes. Following
there are some tests executed on desktop AMD
Athlon X2 2800+ computers with 1Gb of RAM,
both in the client and server side.

To validade the localization system, an ex-
periment was conducted by coupling a camera to
the robotic arm. The robotic arm consist of a
harmonic drive actuator with a coupled encoder
supplying angular readings each 0.000651 seconds.
The data obtained by the encoder were compared
with the information supplied by the vision sys-
tem. The camera was pre-calibrated. Different



Distortion 1 2 3 4
Light Source Distance 0.2 0.22 0.25 0.3
Attenuation Value 0.05 0.05 0.06 0.05
Gaussian Noise 2 2 2 4
Gray Level Minimum 20 30 20 20

Table 1: Undersea Features For Each Distortion
and the tests.

undersea features were applied, like turbidity, sea
snow, low illumination, and others.

Test 1 The first test is obtained by a rota-
tion movement of the robotic arm around its own
axis. The final mosaic is the result of rotation and
translational movements of the camera coupled to
the robotic arm. The test works with 200 captured
and processed frames. While the mosaic is being
constructed, real-time position information is ac-
quired. Figure 1, at column one, shows in green
the displacement returned by the SIFT vision sys-
tem and in blue the reference obtained by the cou-
pled encoder, respectively. Notice that when the
arm inverts its movement (peaks on the curve),
the small drift between the position returned by
the vision and the reference is more evident. This
is the result of the incapacity to detect the move-
ment of the interest points in smooth movement
situations.

The SIFT visual localization system follows
the robotic system in a very good satisfactory
manner. Notice that no information related to
position or pre-established landmarks are neces-
sary.

Test 2 Figure 1, at column two, shows in blue
the speed of the arm, supplied by the encoder,
and in green the speed obtained by the SIFT vi-
sion system. In this test the navigation time was
considerable increased.

Test 3 The same test was conducted with four
different undersea conditions, see table 1. The
good results can be visualized in the figure 1, at
column three.

Test 4 Tests were conducted with two robots
connected to a central station. Figure 2 presents
a visual map, generated in a distributed way with
195 images. Each robot was responsible for send-
ing information to the central station at a three
frames per second rate. The overlaying of images
on the crossing region was satisfactory.

5 Conclusion

We intend to construct visual underwater maps
using one or more AUVs. In this paper we have
presented an original visual approach using SIFT
and homography matrix to estimate the underwa-
ter robot’s localization. Theses maps might assist
on fleet localization throughout a exploration mis-
sion.

Several tests with different undersea features

Figure 2: Final Mosaic generated by 2 robots.

were conducted. The effectiveness of our propose
was validated in a set of scenarios with differ-
ent levels of turbidity, sea snow, low illumination,
and others. The results shown advantage to using
SIFT because it is invariant to scale (z coordinate)
and rotation and highly distinctive. Moreover, the
system was as invariant as possible to remaining
variations, such as illumination variabilities.

As future works we intend to integrate the
ASKF system (currently running on MatLab)
with AUVs robotic platforms. Besides, we in-
tend to use real-time GPU-SIFT (Sinha, 2006)
and the improvements of the SIFT for a faster
execution(Grabner et al., 2006)(Ledwich and
Williams, 2004). Also the manipulation of stereo-
scopic images captured by stereo video heads is a
medium-term goal.
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